
Secure Coding Report:
Injection Vulnerabilities
Reducing Risk in Minutes

Reporting

02. www.SecurityJourney.com | info@SecurityJourney.com Copyright 2022

The AppSec Dilemma
Application security faces a dilemma. Cybercrime is on the rise at an unprecedented level, with the cost of a data breach
now averaging at $4.24m globally – the highest it has ever been reported in IBM’s annual Cost of a Data Breach. This rise is
affecting each industry and every area of IT. Across the cyber landscape, there are undoubtedly a variety of threats directed
at web applications, but the OWASP Top 10 provides a solid breakdown on which vulnerabilities present the biggest risk.
Their rankings paint a clear picture: Injection vulnerabilities have held the top spot for over 10 years, and they are still on the
podium, an undeniable indication that they are endemic in Web Application Development.
In today’s digital world, businesses can’t afford to sit still, and
pressure is mounting on developers to keep apps evolving

in line with the agility of the enterprises they serve. In fact,
Sourcegraph found that 51% of developers have 100x the
volume of code to write compared to 10 years ago, while the
same report identified that 92% feel pressured to release
code faster having been tasked with driving business
innovation. Yet what they’re developing is not necessarily
safe nor secure. Unfortunately, some developers have
been taught that it is the job of the AppSec team – not the
development team – to ensure the enterprise isn’t at risk from
any new application developments. This imbalance and siloed
team approach to innovation creates a significant knowledge
and process gap between the two and is where flaws then
occur.

There needs to be a more security-first mindset at the
development stage. However, there is a distinct lack of
training and awareness of secure coding within the industry
on a global basis. According to Gartner, 71% of CISOs claim

their DevOps stakeholders view security as an impediment
to fast development. If the pressure of time-to-market

continues to mount, it is no surprise that DevOps will
prioritize speed over safety just to meet their targets. Yet
this is a false dichotomy – it does not have to be a choice
between speed or security; both can occur simultaneously.
Considering that according to Forrester, not one of the
Top 40 university coding programs in the United States
require secure coding training, it is hard to blame DevOps
professionals for either not understanding or not prioritizing
security within their day-to-day role. The same issue extends
globally; we’re seeing numerous initiatives being adopted
by UK Research & Innovation (UKRI) to raise awareness of
the concept of security by design, as well as the Institute
of Coding spearheading a national initiative with leading UK
Universities to encourage more security-focused teaching.

Security
Concerns

Injection vulnerabilities have
been at the top of OWASP

Top 10 for 14 years+1

Financial services companies
experienced a

185%
increase in the last 12 months

in high-risk
critical vulnerabilities.2

Demands on
Developers

51%
of developers have 100x
the volume of code vs.

10 years ago3

92%
feel pressured

to release
code faster3

Lack of
Security Training

Secure coding is not a
requirement in the top 40

university coding programs
in the United States4

53%
of developers

have no professional
secure coding training5

1: IBM, 2: Bugcrowd, 3: Sourcegraph, 4:Forrester, 5:Ponemon

“For businesses that recognize the value of security training for
their teams but worry that developers are already under pressure
with numerous time constraints, these findings highlight that
learning to write secure code takes far less time than you may think.”

Derek Brink, VP and Research Fellow at Aberdeen Strategy and Research

Here lies the dilemma: many within
the industry do not even realize
that this lack of knowledge and
understanding of secure code is
an issue, let alone one that has a
simple solution.

In fact, there are areas within application security that are
both critical to an organization’s protection from a data
breach and also incredibly simple to solve.

This research paper presents a central solution to the
application security dilemma, as well as identifying developer
best practice from analysis provided by

Derek Brink, VP and Research Fellow at Aberdeen Strategy
and Research, of approximately 140,000 HackEDU exercises.
Every exercise has been analyzed with the aim to generate
know-how of how to protect against Injection vulnerabilities,
as well as helping educate on the importance of introducing
security
from the very start of application development. HackEDU
believes short and continuous training exercises can help
close the gap between security initiatives and developer
knowledge. Yet the importance of these initiatives has not
yet been realized and it is rarely communicated across the
industry. This paper outlines the benefits of secure coding
training, analyzes the means to implementing programs and
demonstrates how your organization can
avoid unnecessary costs while reducing risk in
the ever-evolving cybersecurity landscape.

Embracing DevSecOps to Enable Shifting-Left
For those in the world of IT, DevSecOps (an approach to culture, automation, and platform design that integrates security as a
shared responsibility throughout the entire IT lifecycle) is a concept that’s hard to avoid and it is often touted as the future of
application development.

Shift-left is one of the possible features of DevSecOps,
which means application security testing is performed
earlier in the development process with the hopes of
preventing vulnerabilities from reaching production code.
Shift-left is becoming business-critical now that cybercrime
is so widespread. Fortunately, Gartner has predicted that
DevSecOps will reach mainstream adoption within the next
two to five years, and that 90% of software development
projects plan to incorporate DevSecOps practices by the end
of this year.

But how is a culture of DevSecOps achieved? At the
foundation, it means ensuring security practices are part
of the entire software development lifecycle (SDLC),
rather than being an afterthought (or only introduced
once vulnerabilities have been identified and as a reactive
remediation). However, for developers to prioritize secure

coding, they need consistent hands-on training, regular
education and the practical know-how to do so. Secure
coding practices are important to keep applications safe,
but too many organizations simply aren’t sure how to train
their developers. What’s more, while DevSecOps may be
the desired end-goal, it is not enough to implement a broad
security awareness training program. Instead, time should
be dedicated towards education of secure coding practices
rather than just awareness of the issue. To resonate with
developers and support their secure coding success, role-
based training should also be encouraged in a way they are
familiar with (e.g., playing with code to find the solution).
Understanding what your developers want, how they learn,
and the vulnerabilities that will be most critical to them is an
essential part of successfully shifting-left.

www.SecurityJourney.com | info@SecurityJourney.com Copyright 2022 03.

The Injection Vulnerability Conundrum
There are a variety of application security training programs that together can form a strong foundation for secure coding
best practice and support the move to DevSecOps. And with 90 – 95% of confirmed data breaches involving attacks on web
applications according to Verizon’s Data Breach Investigations Report (DBIR), continuous training and awareness around how
to protect these applications can make a significant impact. However, this paper looks specifically at Injection flaws.

This category of vulnerabilities spent over 10 years at
the very top of the OWASP Top 10 and now remains in
the top three most critical flaws that developers need to
be aware of. Findings from HackEDU analysis with Derek
Brink highlight that the likelihood of applications having an
Injection flaw ranges from 0% to 19.09%, with a median of
3.37%. These kinds of application vulnerabilities are some of
the most prolific on the web and can be devastating to any
organization, but are particularly threatening to organizations
that store sensitive and / or regulated information about their
customers and workforce. Latest industry reports have found
that 35% of educational institutions and 32% of government

organizations were vulnerable to SQL Injections (SQLi)
last year.

SQLi involves an attacker using the standard data input
interface of a SQL database to insert a database query,
which can potentially compromise the privacy, integrity
or availability of the database, or execute other database
admin operations. It sits alongside Cross-Site Scripting (XSS),
XML External Entities (XXE) and Command Injection as one of
the oldest and easily mitigated web application vulnerabilities
out there.

Cross-Site Scripting (XSS) refers to an attacker using a trusted web application to send malicious code to an end-user’s
browser, where it can potentially hijack the user’s session, access sensitive data (e.g., passwords, account numbers, payment
card data, personally identifiable information), and achieve a successful account takeover.

In an XML External Entity (XXE) attack, an attacker uses a web application’s eXtensible Markup Language (XML) interface
to insert and process XML communications with the application’s trusted data sources / recipients (referred to as “external
entities”) — typically resulting in unauthorized access to data, or as a means to execute commands on remote systems.

A Command Injection refers to an attacker using an application that routinely passes user-supplied data
(e.g., forms, HTTP headers, cookies) to the host operating system shell, as a means to insert and execute OS commands —
typically with the privileges of the application — effectively giving the attacker control over the host.

04. www.SecurityJourney.com | info@SecurityJourney.com Copyright 2022

Prevention is Better than Cure
It is not only easy to mitigate Injection vulnerabilities with continuous secure coding training, but also it is neither a time
intensive nor expensive process to do so. The cost benefits are threefold:

1
Secure applications equate to
cost avoidance.

If coded securely, an application
is protected from the risks and
repercussions from a successful exploit.
Of course, it is possible to remediate
security flaws within the software code
after it has been in production, but this
process is highly problematic. While it
takes months
to identify the issue (research shows
an average of 254 days to discover
an incident related to web application
exploits), it is also extremely time
consuming and expensive to do so. This
falls in line with Boehm’s law: ‘the cost
of finding and fixing
a defect grows exponentially with time.’
If this cost is avoidable, wouldn’t you
avoid it?

2
Penetration testing is an
expensive alternative.

While penetration testing is a valuable
solution, it should not be used as
the first opportunity to enhance
security. With developers trained in
secure coding, penetration testing
can become a useful assessment of a
security approach already implemented.
However, if applications are not
securely coded and a penetration test
is used as a first line of defense, it will
likely flag a number of flaws that need
remediating. To ensure these flaws
are addressed, numerous follow-up
penetration tests will be required. Why
not reduce the ongoing investment in
pen testing by learning to do it right the
first time?

3

Data breaches can be
extremely costly.

A data breach is likely to have multiple
layers of financial consequences. This
could be a ransom payment (63%
of organizations still pay, despite
international cybersecurity advice not
to), but it is also the cost of recovery;
the days or months dedicated to
restoring systems rather than driving
revenue; the money spent on external
MSSP support to bolster protection;
and the reputational damage and
corresponding decline in sales once
customers are aware of the issue.
Investing in a continuous approach
to secure coding today will be
futureproofing your tomorrow.

www.SecurityJourney.com | info@SecurityJourney.com Copyright 2022 05.

06. www.SecurityJourney.com | info@SecurityJourney.com Copyright 2022

HackEDU Injection Vulnerability Training:
Our Findings
To uncover and share the true value of secure coding training and proactively avoiding web application flaws rather than
remedying them later down the line, Derek Brink analyzed six HackEDU courses in the Injection vulnerabilities space. Looking
at nearly 140,000 exercises taken by developers on this subject across the past year, the aim was to identify how a selection
of HackEDU’s exercises quickly and successfully trained developers to write more secure code, and therefore reduce the
likelihood of a data breach within their organizations.

Brink’s analysis uncovered that across the six Injection
vulnerability courses, 45% of the developers were 100%
successful in their first attempt to pass. This left over 50%
of developers demonstrating the need for additional time in
secure coding training – both contextually on why security
matters, and practically with a hands-on approach to
securing their code against Injection flaws.

The results showed that only 7% of developers were unable
(at least as of year-end) to successfully demonstrate
the required skills to find and fix Injection vulnerabilities,
even after repeated exercise attempts. The other 93% of
developers had successfully learned the necessary skills and
were able to now remedy Injection vulnerabilities and protect
their organizations from data breaches linked to this source.
What’s more, 93% of them were able to find and fix SQLi after
less
than 10 minutes of training. While these results only highlight
the secure coding solution for one vulnerability, and regular
training is necessary across all vulnerabilities to ensure better
application security, it demonstrates the ease at which a
critical and pervasive flaw can be solved.

Derek Brink comments on the findings, “For businesses
that recognize the value of security training for their teams
but worry that developers are already under pressure with
numerous time constraints, these findings highlight that
learning to write secure code takes far
less time than you may think. In fact, the median time for
each exercise on Injection vulnerabilities is only 4.1 minutes!
If you can reduce the risk of one of the most common web
application flaws in such a short timeframe, isn’t it worth it?”

“If 93% of your development organization can protect against an issue that
is commonly the root cause of a data breach, with so little time commitment,
wouldn’t you at least consider it?”

Derek Brink, VP and Research Fellow at Aberdeen Strategy and Research

140,000
exercises analyzed

Only

45%
of the developers were

100%
successful in their first attempt to pass

93%
were able to find and fix

SQLi after less than

10 minutes
of training

How to “Get it Right” with Training Best Practice
The findings demonstrate that protecting web applications from one of the biggest vulnerabilities online is achievable,
despite the ongoing pressure on developers to innovate fast. Learning to incorporate security early on in the SDLC is both
simple and highly effective. However, how can organizations make sure they get it right when it comes to a secure coding
training program? There are a number of best practice considerations that will enable your team to get the most out of a
secure coding initiative.

Set measurable goals. To ensure a training program is
successful, it is important to gather information that you
can measure against later down the line. This could be the
number of vulnerabilities that appear within a developer’s
code both before and after the training, as well as their time
spent fixing vulnerabilities and the number of vulnerabilities
that they can detect and fix.

Collaborate with stakeholders. Communicating and working
with stakeholders is key, because without their buy-in and
support, chances of success are low.
Without sharing and championing the importance of secure
coding training from the very start, you may constantly be
defending its value and it will likely be undermined. It takes
time to build a successful security culture, but without
support of key stakeholders, it may be impossible.

Embrace learning science principles. This includes shorter,
‘bite-sized’ exercises, as many learn better when the
information is more digestible. Alongside short exercises,
it is key that secure coding is taught both ‘offensively’
(understanding how an exploit works) and ‘defensively’
(finding and fixing vulnerabilities).
This means that developers are provided the context and

the ‘why’ behind the solutions they’re learning, as without an
understanding of why this change matters, it becomes much
harder to accept and integrate. With ‘defensive’ training,
a hands-on, practical approach will help to engrain key
learnings.

Create a continuous program (with incentives!) ‘One and
done’ training simply does not work. In order to keep security
front of mind throughout the year, repeating elements of the
training will help developers retain knowledge. According to
memory theory, after
31 days around 79% of learning is lost. Therefore,
monthly competitions – with incentives and rewards – is a
great way to ensure learnings aren’t seen once and forgotten
forever.

Measure and optimize. As developers complete their
training, collect feedback along the way and analyze the
results to see what worked and what can be done better next
time. Talk to the developer community and see what they
want and need in future. Cybersecurity is ever changing and
your approach to secure coding should mirror this.

Closing Thoughts
In an era where cybercrime is growing and evolving, the number of solutions and tools to protect businesses is overwhelming
and global cybersecurity skills are at an all-time low. It has therefore never been more important to prioritize continuous
training to help mitigate risk. It has also never been easier and less time intensive to train a team of developers to protect
against one of the most prolific threats to application security. Derek Brink’s analysis proved that while over 50% of
developers need more secure coding training, once a short training program is completed, 93% are able to reduce the risk of
one vulnerability exposing their organization.

While this paper looked exclusively at Injection vulnerabilities as just one example within the broad range of secure coding
training courses, numerous other risks and vulnerabilities will need addressing in order to secure web applications and continue
with the shift-left to a world of DevSecOps. However, by beginning this journey to a more security-first culture with Injection
vulnerability courses, the value of training will be quick and easy to see – both for the developers and for the company
stakeholders that may be harboring doubts. Baking in security from the early on the SDLC will also save organizations significant
costs in the long run, and a small upfront investment will be the key to saving company revenue and reputation moving forward.

There are various ways this secure coding training can be implemented. Yet with best practice adhered too, developers listened
to, and communication prioritized, it is possible to make a palpable difference to enterprise security. Application security no
longer needs to be a dilemma. Instead, developers can become a knowledgeable first line of defense and an indispensable
component in your security strategy.

www.SecurityJourney.com | info@SecurityJourney.com Copyright 2022 07.

Copyright 2022

www.SecurityJourney.com | info@SecurityJourney.com

HackEDU’s spring 2022 acquisition of Security Journey brings together two powerful
platforms to provide application security education for developers and the entire SDLC
team. The two officially became one in August 2022 and are now Security Journey. Two
approaches, one path to build a security-first development culture.

